$\mathrm{O}\left(45^{\mathrm{i}}\right)$, i.e. binds different anions in the [001] direction. It is also an acceptor of hydrogen bonds from $\mathrm{Aq}(26)$ and Aq (34). The coordination of O atoms around $\mathrm{Aq}(1)$ is tetrahedral with distances as given in Table 6.

## The disordered water molecule

$\mathrm{Aq}(13)$ is, as previously mentioned, disordered over two positions with occupancy factors 0.363 (13) and 0.637 (13) for positions $a$ and $b$ respectively. A possible explanation for this is the formation of different weak hydrogen bonds for the two positions, in which $\mathrm{Aq}(13)$ acts as a donor, see Table 6. $\mathrm{Na}(1)$ and $\mathrm{Na}(3)$ complete a tetrahedral arrangement of atoms around $\mathrm{Aq}(13)$ in both the $a$ and $b$ positions.

I wish to thank Professor Nils Ingri for much valuable advice, for his great interest and for all the facilities he placed at my disposal. I also wish to express my gratitude to Dr Lage Pettersson for advice on crystal preparation and Miss Ann-Marie Nenner for technical assistance. I am indebted to Dr Kenneth Wing for revising the English text. This work forms
part of a programme financially supported by the Swedish National Science Research Council.

## References

Antti, B.-M. (1976). Acta Chem. Scand. A30, 24-30.
Coppens, P. \& Hamiton, W. C. (1970). Acta Cryst. A26, 71-83.
Hedman, B. (1973). Acta Chem. Scand. 27, 3335-3354.
Hedman, B. (1977). Acta Cryst. B33, 3077-3083.
Hedman, b. \& Strandberg, R. (1977). To be published.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 71-98, 149. Birmingham: Kynoch Press.
Johansson, G., Pettersson, L. \& Ingri, N. (1974). Acta Chem. Scand. A28, 1119-1128.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Pettersson, L. (1974). Dissertation, Univ. of Umeå.
Pettersson, L. (1975). Chem. Scripta, 7, 145-154.
Strandberg, R. (1973). Acta Chem. Scand. 27, 10041018.

Strandberg, R. (1974). Acta Chem. Scand. A28, 217-225.
Strandberg, R. (1975a). Acta Chem. Scand. A29, 350358.

Strandberg, R. (1975b). Acta Chem. Scand. A29, 359364.

Werner, P.-E. (1969). Ark. Kem. 31, 513-516.

# Multicomponent Polyanions. <br> 17. The Crystal Structure of $\mathrm{Na}_{4} \mathrm{Mo}_{12} \mathrm{GeO}_{40}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}$, a Compound Containing Sodium-Coordinated Dodecamolybdogermanate Anions 

By Rolf Strandberg<br>Department of Inorganic Chemistry, University of Umeã, S-901 87 Umeå, Sweden

(Received 10 March 1977; accepted 15 March 1977)


#### Abstract

The crystal structure of $\mathrm{Na}_{4} \mathrm{Mo}_{12} \mathrm{GeO}_{40}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}$ has been determined from three-dimensional X-ray diffraction data collected with a Pailred diffractometer using Mo Ka radiation. There are two formula units in the triclinic ( $P \overline{1}$ ) unit cell and the cell parameters are $a=14.421(1), b=13.187(1), c=11.596$ (1) $\AA$ í, $a=$ 114.31 (1), $\beta=103.88$ (1) and $\gamma=76.45$ (1) ${ }^{\circ}$. The structure was refined by least-squares methods using anisotropic vibrational parameters to a final $R$ value of 0.029 based on 9988 independent reflexions. The structure is built up of $\mathrm{Mo}_{12} \mathrm{GeO}_{40}^{4-}$ groups linked together by $\mathrm{Na}^{+}$and water molecules in a three-dimensional framework. The heteropolyanion has the well known Keggin structure ( $a$ isomer). The Mo-Mo distances within the group vary between 3.32 and $3.38 \AA$ when the $\mathrm{MoO}_{6}$ octahedra are sharing edges and increase to $3 \cdot 70-3 \cdot 78 \AA$ when only a corner is shared. As would be expected from previous investigations, the Mo-O distances depend on the O coordination number. The four groups of $\mathrm{Mo}-\mathrm{O}$ distances observed have mean values of $1.69,1.82,2.05$ and $2.29 \AA$.


## Introduction

The present crystal structure study forms part of a research project in progress in this department aimed at
elucidating the equilibria and structures of threecomponent polyanion complexes present in aqueous solutions. One of the systems studied contains the reacting components $\mathrm{H}^{+}, \mathrm{MoO}_{4}^{2-}$ and $\mathrm{Ge}(\mathrm{OH})_{4}$. The
equilibria involved when the three-component complexes are formed may be written in the general form $p \mathrm{H}^{+}+q \mathrm{MoO}_{4}^{2-}+r \mathrm{Ge}(\mathrm{OH})_{4} \rightleftharpoons$

$$
\left(\mathrm{H}^{+}\right)_{p}\left(\mathrm{MoO}_{4}^{2-}\right)_{q}\left[\mathrm{Ge}(\mathrm{OH})_{4}\right]_{r},
$$

where $p, q$ and $r$ are integers defining the complexes. The equilibrium analyses indicate the presence of complexes with $q: r$ ratios of $6: 1,9: 1$ and/or 12:1.

In this system, five crystalline phases have been obtained from equilibrium solutions as well as from crystallization experiments. The equilibrium investigations give only the compositions $[(p, q, r)]$ and formation constants ( $\beta_{p q r}$ ) of the complexes formed. In order to obtain structural information, investigations of crystalline phases, by means of X-ray diffraction, may be performed. In the present paper the results of such an investigation are reported. The ( $p, q, r$ ) notation for the complex studied is $(20,12,1)$.

## Experimental

## Crystal preparation

In a typical preparation of the crystals, $\mathrm{GeO}_{2}$, $\mathrm{Na}_{2} \mathrm{MoO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{NaClO}_{4}$ were dissolved in dilute $\mathrm{HClO}_{4}$ to the concentrations $\left[\mathrm{MoO}_{4}^{2-}\right]_{\text {tot }}=120 \mathrm{mM}$, $\left[\mathrm{Ge}(\mathrm{OH})_{4}\right]_{\mathrm{tot}}=20 \mathrm{mM},\left[\mathrm{HClO}_{4}\right]_{\text {tot }}=206 \mathrm{mM}$ and $\left[\mathrm{NaClO}_{4}\right]_{\text {tot }}=3.0 \mathrm{M}$. The dissolution of $\mathrm{GeO}_{2}$ was carried out according to Ingri (1963). The solution was allowed to stand at room temperature for slow evaporation. After a few days, sea-green prismatic crystals were obtained. The crystals are stable in air.

## Crystal data

A number of crystals were mounted and Weissenberg photographs (rotation and zero-level) were recorded. Only the diffraction symmetry $\overline{1}$ could be observed, which determined the crystal system as triclinic. Preliminary cell parameters were calculated from Weissenberg and precession photographs recorded from the crystal used in the data collection. Accurate cell dimensions were refined from a powder photograph recorded with a Guinier-Hägg camera and with $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\left(a=7.8575 \AA, 25^{\circ} \mathrm{C}\right)$ as internal standard. The crystal data are: $\mathrm{Na}_{4} \mathrm{Mo}_{12} \mathrm{GeO}_{40}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}$, FW 2099.9, triclinic, $P \overline{1}, a=14.421$ (1),$b=$ 13.187(1), $c=11.596$ (1) $\AA, \alpha=114.31$ (1), $\beta=$ $103.88(1), \gamma=76.45(1)^{\circ}, V=1928 \AA^{3}, Z=2, D_{x}=$ $3.62 \mathrm{~g} \mathrm{~cm}^{-3}, \mu\left(\mathrm{Mo} K(r)=46.2 \mathrm{~cm}^{-1}\right.$.

## Collection of intensity data

Three-dimensional intensity data were collected at $25^{\circ} \mathrm{C}$ with a Philips Pailred linear diffractometer using Mo $K a$ radiation. A crystal of approximate dimensions $0.11 \times 0.11 \times 0.17 \mathrm{~mm}$ was mounted and rotated about the $c$ axis (parallel to the 0.17 mm edge of the
crystal). 11490 reflexions from the layers $h k 0-h k 13$ up to a limit of $(\sin \theta) / \lambda \sim 0.75 \AA^{-1}$ were scanned. Reflexions with a relative statistical error $\Delta I_{o} / I_{o}$ (Antti, 1973) greater than 0.5 were omitted; this reduced the number of unique observed reflexions to 9988 . The intensities were corrected for Lorentz and polarization effects and an absorption correction was applied.

## Structure determination and refinement

The centrosymmetric space group $P \overline{1}$ was chosen and the structure determination successfully completed with this space group. From a three-dimensional Patterson synthesis the positions of the Ge and Mo atoms were found. Three-dimensional Fourier syntheses gave the coordinates of the remaining O and Na atoms. There were no difficulties in distinguishing water O atoms and Na atoms since the latter had negative isotropic thermal parameters when refined with the scattering factors for $\mathrm{O}^{-}$.

The positional parameters and anisotropic temperature factors for the atoms were refined by fullmatrix least-squares methods and the final $R$ value was 0.029 (where $R=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right| / \Sigma\left|F_{o}\right|$ ). The atomic scattering factors used for $\mathrm{Mo}^{3+}, \mathrm{Ge}, \mathrm{O}^{-}$and $\mathrm{Na}^{+}$were those given in International Tables for X-ray Crystallography (1974). Account was taken of the real part of the dispersion correction. A weighting scheme according to Cruickshank (1965) was applied; $w=1 /(a+$ $\left|F_{o}\right|+c\left|F_{o}\right|^{2}+d \mid F_{o}{ }^{3}$ ), where the values of the constants were $a=500, c=0.001$ and $d=0.00003$. The final difference Fourier synthesis showed no anomalies.

The computer programs used have been described by Antti (1976), and the computations were performed with the CD 3300 and CD CYBER 172 computers at the University of Umeå.

Final positional parameters are given in Table 1.*

## Description and discussion of the structure

The crystal structure is built up of $\mathrm{Mo}_{12} \mathrm{GeO}_{40}^{4-}$ anions joined in a three-dimensional framework by $\mathrm{Na}^{+}$ions and water molecules. The connexions comprise $\mathrm{O}-\mathrm{Na}-\mathrm{O}$ and $\mathrm{O}-\mathrm{Na}-\mathrm{Aq}-\mathrm{Na}-\mathrm{O}$ bridges as well as numerous hydrogen bonds.

## The $\mathrm{Mo}_{12} \mathrm{GeO}_{40}$ group

The group consists of a central $\mathrm{GeO}_{4}$ tetrahedron whose O atoms are part of the surrounding twelve

[^0]Table 1. Fractional atomic coordinates $\left(\times 10^{4} ;\right.$ for Mo and $\mathrm{Ge} \times 10^{5}$ )

Estimated standard deviations are given in parentheses. For the $O$ atoms $\mathrm{O}(i), \mathrm{O}(i, j)$ and $\mathrm{OGe}(i, j, k)$ the index means that the atom is bonded to Mo atoms $i$ (and $j, k$ ) and Ge indicates that it is also bonded to the Ge atom. $\mathrm{Aq}(i)$ and $\mathrm{Aq}(i, j)$ denote water O atoms coordinated to $\mathrm{Na}^{+}$ions $i$ (and $j$ ).

|  | $x$ | $y$ | $z$ |
| :---: | :---: | :---: | :---: |
| Ge | 25461 (3) | 24614 (4) | 25941 (5) |
| Mo(1) | 22610 (3) | 30129 (3) | 57475 (4) |
| Mo(2) | 45095 (3) | 27869 (3) | 51848 (4) |
| Mo(3) | 28690 (3) | 50439 (3) | 51965 (4) |
| $\mathrm{Mo}(4)$ | 1624 (3) | 32314 (3) | 32084 (4) |
| Mo(5) | 15953 (3) | 4163 (3) | 29699 (4) |
| $\mathrm{Mo}(6)$ | 39624 (3) | -213 (3) | 28292 (4) |
| Mo(7) | 48870 (3) | 17976 (3) | 17840 (4) |
| $\mathrm{Mo}(8)$ | 36181 (3) | 43326 (3) | 20545 (4) |
| Mo(9) | 9839 (3) | 48554 (3) | 22509 (4) |
| Mo(10) | 4803 (3) | 23038 (3) | 1545 (4) |
| Mo(11) | 22939 (3) | 97502 (3) | 1695 (4) |
| $\mathrm{Mo}(12)$ | 29795 (3) | 20136 (3) | 95504 (4) |
| O(1) | 1831 (3) | 3207 (3) | 7054 (4) |
| $\mathrm{O}(1,2)$ | 3581 (2) | 2774 (3) | 6261 (3) |
| O(1,3) | 2379 (2) | 4663 (3) | 6253 (3) |
| $\mathrm{O}(1,4)$ | 1022 (2) | 3455 (3) | 4672 (3) |
| O(1,5) | 2095 (3) | 1582 (3) | 4696 (3) |
| $\mathrm{OGe}(1,2,3)$ | 2930 (2) | 3136 (3) | 4217 (3) |
| O(2) | 5540 (2) | 2589 (3) | 6191 (3) |
| $\mathrm{O}(2,3)$ | 4193 (2) | 4320 (3) | 5808 (3) |
| $\mathrm{O}(2,6)$ | 4250 (2) | 1159 (3) | 4264 ('5) |
| $\mathrm{O}(2,7)$ | 4897 (2) | 2562 (3) | 3728 (3) |
| $\mathrm{O}(3)$ | 6994 (3) | 3604 (3) | 3902 (4) |
| $\mathrm{O}(3,8)$ | 3557 (2) | 4823 (3) | 3730 (3) |
| O(3,9) | 8221 (2) | 4856 (3) | 5957 (3) |
| $\mathrm{O}(4)$ | 9087 (3) | 3244 (3) | 3571 (4) |
| $\mathrm{O}(4,5)$ | 663 (2) | 1564 (3) | 2821 (3) |
| $\mathrm{O}(4,9)$ | 19 (2) | 4588 (3) | 3085 (3) |
| O(4,10) | 9637 (2) | 2611 (3) | 1253 (3) |
| OGe( $4,9,10$ ) | 1365 (2) | 3042 (2) | 2163 (3) |
| O(5) | 8923 (3) | 250 (3) | 6433 (4) |
| $\mathrm{O}(5,6)$ | 7036 (2) | 384 (3) | 6719 (3) |
| $\mathrm{O}(5,11)$ | 8474 (2) | 498 (3) | 8724 (3) |
| $\mathrm{OGe}(5,6,11)$ | 2580 (3) | 1051 (3) | 2245 (3) |
| O(6) | 5138 (3) | 1084 (3) | 7118 (4) |
| O(6,7) | 4521 (3) | 648 (3) | 1944 (4) |
| $\mathrm{O}(6,11)$ | 6632 (3) | 914 (3) | 9053 (4) |
| O(7) | 6100 (3) | 1464 (3) | 1865 (4) |
| $\mathrm{O}(7,8)$ | 4805 (3) | 3426 (3) | 2003 (4) |
| $\mathrm{O}(7,12)$ | 4415 (3) | 1492 (3) | 101 (3) |
| OGe $(7,8,12)$ | 3295 (2) | 2629 (3) | 1744 (3) |
| $\mathrm{O}(8)$ | 6156 (3) | 4557 (3) | 8149 (4) |
| $\mathrm{O}(8,9)$ | 2150 (3) | 4694 (3) | 1803 (4) |
| $\mathrm{O}(8,12)$ | 3281 (3) | 3438 (3) | 110 (4) |
| O(9) | 9518 (3) | 3801 (3) | 7553 (4) |
| O(9,10) | 338 (3) | 4034 (3) | 704 (4) |
| O(10) | 9735 (3) | 2088 (3) | 8726 (4) |
| O(10,11) | 1081 (3) | 931 (3) | 88 (4) |
| $\mathrm{O}(10,12)$ | 1693 (3) | 2398 (3) | 9613 (4) |
| O(11) | 8023 (3) | 1330 (3) | 1204 (4) |
| O(11,12) | 2844 (3) | 595 (3) | 9712 (4) |
| O(12) | 3021 (3) | 1517 (4) | 7976 (4) |
| $\mathrm{Na}(1)$ | 5956 (2) | 2935 (2) | 8715 (3) |
| $\mathrm{Na}(2)$ | 9309 (2) | 1896 (2) | 6401 (3) |
| $\mathrm{Na}(3)$ | 7874 (2) | 3545 (3) | 1662 (3) |
| $\mathrm{Na}(4)$ | 7236 (3) | 1750 (3) | 3832 (4) |
| Aq(1) | 7600 (4) | 2742 (4) | 8908 (7) |
| $A q^{\prime}(1)$ | 4358 (3) | 3849 (4) | 8737 (4) |

Table 1 (cont.)

|  | $x$ | $y$ | $z$ |
| :--- | ---: | ---: | ---: |
| $\mathrm{Aq}(1,3)$ | $6200(3)$ | $3903(4)$ | $1024(4)$ |
| $\mathrm{Aq}(2)$ | $952(4)$ | $1126(5)$ | $6473(6)$ |
| $\mathrm{Aq}(2,4)$ | $7615(4)$ | $2618(5)$ | $6171(6)$ |
| $\mathrm{Aq}^{\prime}(2,4)$ | $8947(5)$ | $1194(6)$ | $4050(6)$ |
| $\mathrm{Aq}(3)$ | $8244(4)$ | $4682(4)$ | $653(5)$ |
| $\mathrm{Aq}(4)$ | $6724(5)$ | $432(5)$ | $4193(5)$ |





Fig. 2. The $\mathrm{Mo}_{12} \mathrm{GeO}_{40}$ group shown with idealized polyhedra.
$\mathrm{MoO}_{6}$ octahedra. The twelve octahedra may be subdivided into four $\mathrm{Mo}_{3} \mathrm{O}_{13}$ groups (Fig. 1). In these groups each $\mathrm{MoO}_{6}$ octahedron is linked to its neighbour on either side by a shared edge making one corner common to the three octahedra. The four groups are then linked to each other by sharing corners and to the $\mathrm{GeO}_{4}$ tetrahedron via the three-coordinated O atoms. This structure is often named the Keggin molecule (Keggin, 1934). Of the five structural possibilities for $1: 12$ heteropolyanions suggested by Baker \& Figgis (1970) this is the a isomer, which appears to be thermodynamically stable. In Fig. 2 the coupling of the twelve $\mathrm{MoO}_{6}$ octahedra and the $\mathrm{GeO}_{4}$ tetrahedron in the group is shown with idealized polyhedra.

Table 2. Interatomic distances $(\AA)$ and bond angles $\left({ }^{\circ}\right)$ within the $\mathrm{Mo}_{12} \mathrm{GeO}_{40}$ group, with estimated standard deviations in parentheses

| $\mathrm{Mo}-\mathrm{Mo}$ and $\mathrm{Ge}-\mathrm{Mo}$ |  |
| :--- | ---: |
| $\mathrm{Mo}(1)-\mathrm{Mo}(3)$ | $3.336(1)$ |
| $\mathrm{Mo}(1)-\mathrm{Mo}(2)$ | $3.381(1)$ |
| $\mathrm{Mo}(1)-\mathrm{Mo}(4)$ | $3.732(1)$ |
| $\mathrm{Mo}(1)-\mathrm{Mo}(5)$ | $3.741(1)$ |
| $\mathrm{Mo}(2)-\mathrm{Mo}(3)$ | $3.337(1)$ |
| $\mathrm{Mo}(2)-\mathrm{Mo}(6)$ | $3.715(1)$ |
| $\mathrm{Mo}(2)-\mathrm{Mo}(7)$ | $3.743(1)$ |
| $\mathrm{Mo}(3)-\mathrm{Mo}(8)$ | $3.731(1)$ |
| $\mathrm{Mo}(3)-\mathrm{Mo}(9)$ | $3.779(1)$ |
| $\mathrm{Mo}(4)-\mathrm{Mo}(9)$ | $3.317(1)$ |
| $\mathrm{Mo}(4)-\mathrm{Mo}(10)$ | $3.346(1)$ |
| $\mathrm{Mo}(4)-\mathrm{Mo}(5)$ | $3.737(1)$ |

$\mathrm{MoO}_{6}$ octahedra

|  | O(1) | O(1,5) | $\mathrm{O}(1,2)$ | O(1,4) | O $(1,3)$ | $\mathrm{OGe}(1,2,3)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mo(1) | 1.673 (4) | 1.812 (3) | 1.846 (3) | 2.032 (3) | $2 \cdot 045$ (3) | $2 \cdot 289$ (3) |
| O(1) |  | 2.739 (5) | 2.746 (5) | 2.848 (5) | 2.776 (5) |  |
| OGe( $1,2,3$ ) |  | $2 \cdot 895$ (5) | 2.526 (5) | 2.829 (5) | $2 \cdot 548$ (5) |  |
| $\mathrm{O}(1,5)$ |  |  | 2.778 (5) | 2.597 (5) |  |  |
| $\mathrm{O}(1,3)$ |  |  | 2.683 (5) | $2 \cdot 658$ (5) |  |  |
| $\mathrm{O}(1)-\mathrm{Mo}(1)-$ |  | $103 \cdot 5$ (2) | 102.5 (2) | $100 \cdot 0$ (2) | 96.1 (2) |  |
| $\mathrm{OGe}(1,2,3)-\mathrm{Mo}(1)-$ |  | 89.0 (1) | 74.4 (1) | 81.6 (1) | 71.8 (1) |  |
| $\mathrm{O}(1,5)-\mathrm{Mo}(1)-$ |  |  | 98.9 (1) | 84.8 (1) |  |  |
| $\mathrm{O}(1,3)-\mathrm{Mo}(1)-$ |  |  | 87.0 (1) | 81.4 (1) |  |  |


|  | O(2) | $\mathrm{O}(2,7)$ | $\mathrm{O}(2,3)$ | O(1,2) | O( 2,6 ) | OGe(1,2,3) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Mo}(2)$ | 1.696 (4) | 1.793 (4) | 1.828 (3) | 2.045 (3) | 2.047 (3) | $2 \cdot 316$ (3) |
| $\mathrm{O}(2)$ |  | 2.771 (5) | 2.743 (5) | 2.796 (5) | 2.862 (5) |  |
| $\mathrm{OGe}(1,2,3)$ |  | $2 \cdot 889$ (5) | 2.551 (5) | $2 \cdot 526$ (5) | $2 \cdot 858$ (4) |  |
| $\mathrm{O}(2,7)$ |  |  | 2.773 (5) |  | $2 \cdot 591$ (5) |  |
| $\mathrm{O}(1,2)$ |  |  | $2 \cdot 676$ (5) |  | $2 \cdot 623$ (5) |  |
| $\mathrm{O}(2)-\mathrm{Mo}(2)-$ |  | $105 \cdot 2$ (2) | $102 \cdot 2$ (2) | $96 \cdot 3$ (2) | 99.4 (2) |  |
| OGe(1,2,3)-Mo(2)- |  | 88.4 (1) | 74.9 (1) | $70 \cdot 5$ (1) | 81.6 (1) |  |
| $\mathrm{O}(2,7)-\mathrm{Mo}(2)-$ |  |  | 100.0 (1) |  | 84.6 (1) |  |
| $\mathrm{O}(1,2)-\mathrm{Mo}(2)-$ |  |  | 87.2 (1) |  | 79.7 (1) |  |
|  | O(3) | O(3,9) | O(1,3) | $\mathrm{O}(2,3)$ | $\mathrm{O}(3,8)$ | OGe(1,2,3) |
| Mo(3) | 1.686 (3) | 1.821 (3) | 1.827 (3) | 2.028 (3) | 2.056 (4) | $2 \cdot 284$ (3) |
| O(3) |  | 2.764 (5) | 2.731 (5) | 2.803 (5) | 2.839 (5) |  |
| OGe(1,2,3) |  | 2.833 (4) | 2.548 (5) | 2.551 (5) | 2.882 (5) |  |
| $\mathrm{O}(3,9)$ |  |  | 2.781 (5) |  | $2 \cdot 588$ (5) |  |
| $\mathrm{O}(2,3)$ |  |  | $2 \cdot 686$ (5) |  | $2 \cdot 657$ (5) |  |
| $\mathrm{O}(3)-\mathrm{Mo}(3)-$ |  | 104.0 (2) | 102.0 (2) | $97 \cdot 6$ (2) | 98.2 (2) |  |
| OGe(1,2,3)-Mo(3)- |  | $86 \cdot 5$ (1) |  | $72 \cdot 3$ (1) |  |  |
| $\mathrm{O}(3,9)-\mathrm{Mo}(3)-$ |  |  | 99.3 (1) |  | 83.5 (1) |  |
| $\mathrm{O}(2,3)-\mathrm{Mo}(3)-$ |  |  | $88 \cdot 1$ (1) |  | $81 \cdot 2$ (1) |  |
|  | O(4) | O(1,4) | $\mathrm{O}(4,9)$ | $\mathrm{O}(4,5)$ | $\mathrm{O}(4,10)$ | OGe(4,9,10) |
| Mo(4) | 1.697 (4) | 1.804 (3) | 1.813 (3) | 2.038 (3) | 2.079 (4) | $2 \cdot 257$ (3) |
| O(4) |  | 2.803 (5) | 2.751 (5) | 2.798 (5) | 2.723 (5) |  |
| OGe(4,9,10) |  | 2.876 (5) | $2 \cdot 532$ (5) | 2.815 (4) | $2 \cdot 560$ (4) |  |
| $\mathrm{O}(1,4)$ |  |  | 2.772 (5) | $2 \cdot 600$ (5) |  |  |
| $\mathrm{O}(4,10)$ |  |  | 2.677 (5) | $2 \cdot 687$ (5) |  |  |
| $\mathrm{O}(4)-\mathrm{Mo}(4)-$ |  | 106.4 (2) | 103.2 (2) | 96.6 (2) | 91.7 (2) |  |
| $\mathrm{OGe}(4,9,10)-\mathrm{Mo}(4)-$ |  | 89.4 (1) | $76 \cdot 1$ (1) | 81.7 (1) | $72 \cdot 2$ (1) |  |
| $\mathrm{O}(1,4)-\mathrm{Mo}(4)-$ |  |  | 100.1 (1) | 84.9 (1) |  |  |
| $\mathrm{O}(4,10)-\mathrm{Mo}(4)-$ |  |  | 86.6 (1) | 81.4 (1) |  |  |

Table 2 (cont.)

|  | O(5) | $\mathrm{O}(4,5)$ | $\mathrm{O}(5,11)$ | O(5,6) | $\mathrm{O}(1,5)$ | OGe( $5,6,11$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Mo}(5)$ | 1.693 (4) | 1.811 (3) | 1.827 (3) | 2.034 (3) | 2.045 (3) | $2 \cdot 265$ (4) |
| O(5) |  | 2.759 (5) | 2.756 (5) | 2.776 (5) | 2.800 (5) |  |
| OGe(5,6,11) |  | 2.861 (5) | 2.547 (5) | 2.527 (5) | 2.854 (5) |  |
| $\mathrm{O}(4,5)$ |  |  | 2.762 (5) |  | 2.612 (5) |  |
| $\mathrm{O}(5,6)$ |  |  | 2.697 (5) |  | 2.636 (5) |  |
| $\mathrm{O}(5)-\mathrm{Mo}(5)-$ |  | 103.9 (2) | 103.0 (2) | 95.9 (2) | 96.5 (2) |  |
| $\mathrm{OGe}(5,6,11)-\mathrm{Mo}(5)-$ |  | 88.4 (1) | 76.2 (1) | 71.8 (1) | 82.7 (1) |  |
| $\mathrm{O}(4,5)-\mathrm{Mo}(5)-$ |  |  | 98.8 (1) |  | 85.0 (1) |  |
| $\mathrm{O}(5,6)-\mathrm{Mo}(5)-$ |  |  | 88.5 (1) |  | 80.5 (1) |  |
|  | O(6) | O(2,6) | $\mathrm{O}(5,6)$ | O(6,7) | $\mathrm{O}(6,11)$ | OGe( $5,6,11$ ) |
| $\mathrm{Mo}(6)$ | 1.683 (4) | 1.789 (3) | 1.861 (3) | 1.989 (4) | 2.084 (4) | $2 \cdot 292$ (3) |
| O(6) |  | 2.765 (5) | 2.762 (5) | 2.811 (6) | 2.756 (6) |  |
| $\mathrm{OGe}(5,6,11)$ |  | 2.912 (5) | 2.527 (5) | 2.803 (5) | 2.550 (5) |  |
| $\mathrm{O}(2,6)$ |  |  | 2.778 (5) | 2.595 (5) |  |  |
| $\mathrm{O}(6,11)$ |  |  | 2.675 (5) | $2 \cdot 658$ (5) |  |  |
| $\mathrm{O}(6)-\mathrm{Mo}(6)-$ |  | $105 \cdot 5$ (2) | 102.3 (2) | 99.6 (2) | 93.4 (2) |  |
| $\mathrm{OGe}(5,6,11)-\mathrm{Mo}(6)-$ |  | 90.2 (1) | 74.2 (1) | 81.5 (1) | 71.1(1) |  |
| $\mathrm{O}(2,6)-\mathrm{Mo}(6)-$ |  |  | 99.1 (1) | 86.6 (1) |  |  |
| $\mathrm{O}(6,11)-\mathrm{Mo}(6)-$ |  |  | 85.2 (1) | 81.4 (1) |  |  |
|  | O(7) | O(6,7) | $\mathrm{O}(7,12)$ | $\mathrm{O}(7,8)$ | O(2,7) | OGe(7,8,12) |
| $\mathrm{Mo}(7)$ | 1.691 (4) | 1.807 (4) | 1.811 (4) | 2.034 (4) | 2.054 (4) | $2 \cdot 299$ (3) |
| O(7) |  | 2.772 (5) | 2.780 (5) | 2.784 (5) | 2.797 (5) |  |
| $\mathrm{OGe}(7,8,12)$ |  | 2.853 (5) | 2.545 (5) | 2.537 (5) | 2.856 (5) |  |
| $\mathrm{O}(6,7)$ |  |  | 2.748 (5) |  | 2.598 (5) |  |
| $\mathrm{O}(7,8)$ |  |  | 2.671 (5) |  | 2.646 (5) |  |
| $\mathrm{O}(7)-\mathrm{Mo}(7)-$ |  | 104.8 (2) | 105.1 (2) | 96.3 (2) | 96.2 (2) |  |
| $\mathrm{OGe}(7,8,12)-\mathrm{Mo}(7)-$ |  | 87.2 (1) | 75.5 (1) | 71.4 (1) | 81.8 (1) |  |
| $\mathrm{O}(6,7)-\mathrm{Mo}(7)-$ |  |  | 98.9 (2) |  | 84.3 (1) |  |
| $\mathrm{O}(7,8)-\mathrm{Mo}(7)-$ |  |  | 87.8 (2) |  | $80 \cdot 7$ (1) |  |
|  | $\mathrm{O}(8)$ | $\mathrm{O}(3,8)$ | $\mathrm{O}(7,8)$ | $\mathrm{O}(8,9)$ | $\mathrm{O}(8,12)$ | OGe(7,8,12) |
| $\mathrm{Mo}(8)$ | 1.688 (4) | 1.795 (4) | 1.842 (4) | 2.035 (4) |  | $2 \cdot 266$ (3) |
| $\mathrm{O}(8)$ |  | 2.764 (6) | 2.751 (5) | 2.822 (6) | 2.748 (6) |  |
| $\mathrm{OGe}(7,8,12)$ |  | 2.903 (5) | 2.537 (5) | $2 \cdot 818$ (5) | 2.523 (5) |  |
| $\mathrm{O}(3,8)$ |  |  | 2.790 (5) | 2.609 (5) |  |  |
| $\mathrm{O}(8,12)$ |  |  | 2.710 (5) | 2.618 (5) |  |  |
| $\mathrm{O}(8)-\mathrm{Mo}(8)-$ |  | 105.0 (2) | 102.3 (2) | 98.2 (2) | 93.6 (2) |  |
| $\mathrm{OGe}(7,8,12)-\mathrm{Mo}(8)-$ |  | $90 \cdot 5$ (1) | 75.5 (1) | 81.7 (1) | 71.1(1) |  |
| $\mathrm{O}(3,8)-\mathrm{Mo}(8)-$ |  |  | 100.2 (2) | 85.7 (1) |  |  |
| $\mathrm{O}(8,12)-\mathrm{Mo}(8)-$ |  |  | 87.6 (2) | 79.4 (1) |  |  |
|  | O(9) | O(8,9) | O $(9,10)$ | $\mathrm{O}(4,9)$ | O(3,9) | OGe(4,9,10) |
| Mo(9) | 1.692 (4) | 1.817 (4) | 1.825 (4) | 2.038 (3) | 2.047 (3) | $2 \cdot 289$ (3) |
| $\mathrm{O}(9)$ $\mathrm{OGe}(4,9,10)$ |  | 2.773 (6) | 2.757 (5) | 2.776 (5) | 2.846 (5) | 2.289 (3) |
| OGe( $4,9,10$ ) $\mathrm{O}(8,9)$ |  | 2.886 (5) | $2.545(5)$ $2.787(5)$ | 2.532 (5) | $2.823(5)$ 2.575 (5) |  |
| $\mathrm{O}(4,9)$ |  |  | 2.675 (5) |  | $2.575(5)$ $2.658(5)$ |  |
| $\mathrm{O}(9)-\mathrm{Mo}(9)-$ |  | 104.3 (2) | 103.2 (2) | 95.7 (2) | 98.7 (2) |  |
| OGe(4,9,10)-Mo(9)- |  | 88.5 (1) | 75.5 (1) | 71.4 (1) | 81.0 (1) |  |
| $\mathrm{O}(8,9)-\mathrm{Mo}(9)-$ |  |  | 99.8 (2) |  | 83.4 (1) |  |
| $\mathrm{O}(4,9)-\mathrm{Mo}(9)-$ |  |  | 87.5 (1) |  | 81.2 (1) |  |
|  | O(10) | $\mathrm{O}(10,11)$ | O $(4,10)$ | $\mathrm{O}(10,12)$ | $\mathrm{O}(9,10)$ | OGe(4,9,10) |
| Mo(10) | 1.697 (4) | 1.794 (4) | 1.831 (3) | 2.040 (4) | 2.074 (4) | 2.299 (3) |
| $\mathrm{O}(10)$ |  | 2.778 (5) | 2.752 (5) | 2.828 (5) | 2.801 (5) |  |
| $\mathrm{OGe}(4,9,10)$ |  | $2 \cdot 873$ (5) | 2.560 (4) | 2.847 (5) | $2 \cdot 545$ (5) |  |
| $\mathrm{O}(10,11)$ |  |  | 2.792 (5) | 2.595 (5) |  |  |
| $\mathrm{O}(9,10)$ |  |  | $2 \cdot 670$ (5) | 2.654 (5) |  |  |
| $\mathrm{O}(10)-\mathrm{Mo}(10)-$ $\mathrm{OGe}(4,9,10)-\mathrm{Mo}(10)-$ |  | 105.4 $88.2(2)$ | $\begin{array}{r}102.4 \\ 75.6 \\ \hline\end{array}$ | 97.9 (2) 817 | 95.4 (2) |  |
| $\mathrm{OGe}(4,9,10)-\mathrm{Mo}(10)-$ $\mathrm{O}(10,11)-\mathrm{Mo}(10)-$ |  | 88.2 (1) | $75.6(1)$ $100.7(2)$ | $81.7(1)$ 85.0 (2) | 71.0 (1) |  |
| $\mathrm{O}(9,10)-\mathrm{Mo}(10)-$ |  |  | 86.0 (1) | 80.3 (1) |  |  |

Table 2 (cont.)


Distances within the group are collected in Table 2. It can be seen that when the $\mathrm{MoO}_{6}$ octahedra share edges the Mo-Mo distances vary between 3.32 and $3.38 \AA$ and when sharing corners they increase to $3.70-3.78 \AA$. These distances are in good agreement with those found in similar structures (Strandberg, 1975; Hedman, 1977).

## The $\mathrm{MoO}_{6}$ octahedra

As can be seen from the distances and angles in Table 2, the $\mathrm{MoO}_{6}$ octahedra are somewhat distorted.


Fig. 3. A schematic figure of a $\mathrm{MoO}_{6}$ octahedron. The numbers within the circles, representing O atoms, refer to the number of coordinating Mo atoms. The distances given are mean values.

The trend of increasing distances with increasing coordination numbers found in many other structures (Hedman, 1977) is also found in this investigation. Each octahedron comprises one unshared O atom, one O atom in common with three Mo and Ge , and four O atoms shared between two Mo atoms. The Mo-O distances to two-coordinated O atoms may be divided into two groups $(2+2)$ with a difference of about 0.2 $\AA$. Consequently there are four groups of $\mathrm{Mo}-\mathrm{O}$ distances: (i) $1.67-1.70 \AA, O$ atom coordinated to one Mo atom only; (ii) $1.79-1.86 \AA, \mathrm{O}$ atom coordinated to two Mo atoms; (iii) $1.99-2.08 \AA$, O atom coordinated to two Mo atoms; and (iv) 2.26-2.32 $\AA$, O atom coordinated to Ge as well as to three Mo atoms. O atoms in group (i) are always in a trans position relative to those in group (iv), while those in group (ii) are in a trans position relative to those in group (iii). A schematic representation of this is given in Fig. 3. The differences in Mo-O distances in the octahedra are a result of varying $\pi$-bond contributions to the bonds.

## The $\mathrm{GeO}_{4}$ tetrahedron

Distances and angles within the group are collected in Table 2. The Ge-O distances are 1.72-1.74 $\AA$ and the $\mathrm{O}-\mathrm{O}$ distances are $2.82-2.85 \AA$. These distances
and the $\mathrm{O}-\mathrm{Ge}-\mathrm{O}$ angles ( $109-110^{\circ}$ ) agree well with values found in other compounds containing $\mathrm{GeO}_{4}$ groups (Ingri \& Lundgren, 1963; Nørlund Christensen, 1970) and the tetrahedron is almost regular.

## The sodium ions and water molecules

In the structure there are four kinds of crystallographically different $\mathrm{Na}^{+}$ions: $\mathrm{Na}(1), \mathrm{Na}(2), \mathrm{Na}(3)$ and $\mathrm{Na}(4)$. They are all coordinated to different group O atoms, mainly those which are unshared, and in this way $\mathrm{O}-\mathrm{Na}-\mathrm{O}$ bridges between the groups are formed. $\mathrm{Na}(4)$ connects two groups while the remaining $\mathrm{Na}^{+}$ ions form bridges between three groups. In all there are eleven $\mathrm{Na}^{+}$ions surrounding the group and they coordinate to ten of the twelve unshared O atoms as well as to three shared O atoms.

In addition to binding to group O atoms, each $\mathrm{Na}^{+}$ ion is also surrounded by water O atoms. Sodium usually coordinates six O atoms in an approximately

Table 3. Sodium-oxygen distances $(\AA)$ with estimated standard deviations in parentheses

| $\mathrm{Na}(1)-\mathrm{Aq}(1)$ | $2.291(6)$ |
| :--- | :--- |
| $\mathrm{Na}(1)-\mathrm{Aq}(1)$ | $2.337(5)$ |
| $\mathrm{Na}(1)-\mathrm{Aq}(1,3)$ | $2.423(5)$ |
| $\mathrm{Na}(1)-\mathrm{O}(8)$ | $2.574(5)$ |
| $\mathrm{Na}(1)-\mathrm{O}(2)$ | $2.705(5)$ |
| $\mathrm{Na}(1)-\mathrm{O}(6)$ | $2.713(5)$ |
| $\mathrm{Na}(1)-\mathrm{O}(6,11)$ | $2.769(5)$ |
| $\mathrm{Na}(2)-\mathrm{Aq}(2)$ | $2.346(6)$ |
| $\mathrm{Na}(2)-\mathrm{O}(9)$ | $2.363(5)$ |
| $\mathrm{Na}(2)-\mathrm{O}(5)$ | $2.380(4)$ |
| $\mathrm{Na}(2)-\mathrm{Aq}(2,4)$ | $2.398(6)$ |
| $\mathrm{Na}(2)-\mathrm{Aq}^{\prime}(2,4)$ | $2.455(7)$ |
| $\mathrm{Na}(2)-\mathrm{O}(10)$ | $2.535(5)$ |

octahedral arrangement, but in this investigation $\mathrm{Na}(1)$ coordinates seven, and $\mathrm{Na}(4)$ five.

Three of the water O atoms are coordinated to two $\mathrm{Na}^{+}$ions. This strengthens the coupling between the groups in such a way that $\mathrm{O}-\mathrm{Na}-\mathrm{Aq}-\mathrm{Na}-\mathrm{O}$ bridges are formed. The $\mathrm{Na}-\mathrm{O}$ distances are shown in Table 3.

No attempts were made to locate the H atoms, but the $\mathrm{O}-\mathrm{Aq}$ and $\mathrm{Aq}-\mathrm{Aq}$ distances and $\mathrm{O}-\mathrm{Aq}-\mathrm{O}$, $\mathrm{O}-\mathrm{Aq}-\mathrm{Aq}$ and $\mathrm{Aq}-\mathrm{Aq}-\mathrm{Aq}$ angles indicate that there is a network of hydrogen bonds in the structure.

I thank Professor Nils Ingri for much valuable advice, for his great interest and for all the facilities placed at my disposal. I also express my gratitude to Dr Lage Pettersson for the crystal preparation. Linguistic corrections have been made by Dr Michael Sharp. This work is part of a programme financially supported by the Swedish National Science Research Council.

## References

Antti, B.-M. (1973). Acta Chem. Scand. 27, 3513-3522.
Antti, B.-M. (1976). Acta Chem. Scand. A 30, 24-30.
Baker, L. C. W. \& Figgis, J. S. (1970). J. Amer. Chem. Soc. 92, 3794-3797.
Cruickshank, D. W. J. (1965). Computing Methods in Crystallography, p. 114. London: Pergamon Press.
Hedman, B. (1977). Acta Cryst. B33, 3083-3090.
Ingri, N. (1963). Acta Chem. Scand. 17, 597-616.
Ingri, N. \& Lundgren, G. (1963). Acta Chem. Scand. 17, 617-633.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 71-98, 149. Birmingham: Kynoch Press.
Keggin, J. F. (1934). Proc. Roy. Soc. A144, 75-100.
Nørlund Christensen, A. (1970). Acta Chem. Scand. 24, 1287-1293.
Strandberg, R. (1975). Acta Chem. Scand. A29, 350-364.


[^0]:    * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32596 ( 39 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

